Trial in Progress: A Phase 1 Trial of TSC-100 and TSC-101, Engineered T Cell Therapies That Target Minor **SCAN** Histocompatibility Antigens to Eliminate Residual Disease After Hematopoietic Cell Transplantation

For TSC-100/101

Day # -13 to -6

Background and Rationale

- Myeloid malignancies such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and certain acute lymphoblastic leukemias (ALL) have not been addressed by CAR-T therapies due to lack of targets specific for malignant myeloid cells that spare normal myeloid cells
- Hematopoietic cell transplantation (HCT) is the curative option for most of these patients yet ~40% of patients relapse after HCT due to residual malignant cells post-HCT
- A potential solution is to target minor histocompatibility antigens(MiHAs) mismatched between patients and donors
- The TSCAN-001 trial is studying TCR-Ts engineered to target MiHAs HA-1 (TSC-100) or HA-2 (TSC-101) to eliminate residual recipient blood cells post-HCT, thus preventing relapse
- Donor hematopoietic cells negative for MiHAs or HLA-A*02:01 that presents these MiHAs are untouched by TCR-F cells, thereby sparing normal blood cells post-HCT

Key Inclusion Criteria:

HLA-A*02:01

1. Age ≥18 years

- 2. AML, MDS or ALL
- 3. Reduced intensity
- conditioning HCT eligible
- 4. Haploidentical donors
- Key Endpoints:
- . Adverse events, DLTs
- 2. Relapse rates, DFS, OS 3. MRD pre-/ post-HCT, donor
- chimerism kinetics
- AML, MDS, ALL patients eligible for reduced intensity conditioning (RIC)-based haploidentical donor HCT are assigned to treatment arms if HLA-A*02:01 positive or control arm if HLA-A*02:01 negative
- In treatment arms, HA-1 positive patients (60%) get TSC-100 + HCT, HA-2 positive patients (40%) get TSC-101 + HCT and control arm patients get HCT alone
- Previous CIBMTR analysis found no differences in outcomes by HLA type (ASH 2021, abstract # 3863)

Dose Level 2 (2 doses)** Dose Level 3 (2 doses)** ≥Grac Thro

Hyp

Monzr M. Al Malki^{1*}, Hyung C. Suh², Alla Keyzner³, Aasiya Matin⁴, Yun Wang⁵, Nina Abelowitz⁵, Jim Murray⁵, Gavin MacBeath⁵, Debora Barton⁵, Shrikanta Chattopadhyay⁵, Ran Reshef⁶ *Presenting author; ¹City of Hope, Duarte, CA,²Hackensack Medical Center, Hackensack, NJ,³Mount Sinai, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁵TScan Therapeutics, Waltham, MA,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, MA,⁶Columbia University, New York, NY,⁶Columbia University, New York, NY,⁴Karmanos Cancer Institute, Detroit, NA,⁶Columbia University, New York, NY,⁶Columbia University, New York, NY

Dose escalation scheme and interval 3+3 dose escalation rules

-6 to -2

For PBSC collection

(A) Dose level cohorts and treatment regimen for donors & patients in treatment arms. (B) interval 3+3 design has flexible cohort size from 1-12 participants depending on DLTs at each dose level (Liu et al, J Biopharm Stat., 2020)

Patients have been enrolled into all three arms of the study

	TSC-101	TSC-100	Contro
Patient ID	P-004-0001	P-004-0004	P-002-0001
Diagnosis	MDS with mTP53	T-ALL	MDS
Molecular features	5q-, mTP53	ATM <2%	Trisomy 8
Pre-HCT MRD	Positive (TP53 VAF 67%)	Negative	Positive (SRSF2 VAF 35%)
RIC regimen	Flu/ Mel/ TBI	Flu/ Cy/ TBI	Flu/ Cy/ TBI
Transplant date	16 Feb 2023	21 Mar 2023	01 Nov 2022
TCR-T treatment	09 Mar 2023	19 Apr 2023	N/A

Safety Review Committee (SRC) has approved escalation to Dose Level 2 for TSC-101

Adverse events and serious adverse events (SAEs) similar between arms

e 2 adverse event	TSC-101/ 100 Highest grade	Control Highest grade	Arm	SAE
Diarrhea	3	2	Control	Skin GvHD
Anemia	3	4	Control	GI GvHD
Fatigue	2	2	Control	Pneumonia
rombocytopenia	4	4	TSC-101	GI GvHD
Vomiting	2	2		
Neutropenia	4	4	No evidence of cytok or neurotoxicity noted TSC-100 infusion by monitoring (CRP/ ferri	
Hypertension	2	3		
pomagnesemia	2	1		
Skin/GI GVHD	3	3		

Grade	Days post-HCT
2	+49
3	+53
3	+56
3	+67

okine release syndrome d to date after TSC-101/ clinical or laboratory ritin)

TSC-101 (left 4 graphs) and TSC-100 (right 4 graphs) show expansion (percent of T cells), proliferation (Ki67 positive), activation (granzyme B positive) and shift to CD4+ subsets that can persist long-term (Melenhorst et al, Nature 2022)

TSC-101 treated patient has undetectable recipient chimerism, unlike controls

Day post HCT	Subset	P-004-0001 (TSC-101)	P-002-001 (Control)
Day 21	CD33 CD3 TS Whole blood	UD C-101→ D D	UD D UD
Day 35	CD33 CD3 Whole blood	UD D D	UD D UD
Day 42	CD33 CD3 Whole blood	UD UD UD	UD D UD
Day 56	CD33 CD3 Whole blood	UD UD UD	UD D UD
Day 63	Whole bone marrow CD34		D D
Day 77	CD33 CD3 Whole blood		UD D D
Day 133	CD33 CD3 Whole blood		D D D

UD: undetectable, D: detectable; chimerism measured with high-sensitivity Alloheme assay (limit of detection 0.13%)

TP53 mutated MDS has >80% risk of relapse or death after HCT (Lindsley et al, NEJM 2017). Achieving MRD negative status and undetectable recipient chimerism is generally associated with low risk of relapse (Craddock, J Clin Oncol 2021).

#798

TSC-101 and TSC-100 undergo expansion, activation & persistence post-infusion

