

Non-clinical development of T-Plex component TSC-200-A0201: A natural HPV16 E7-specific TCR-T cell therapy for the treatment of HPV16-positive solid tumors

Sonal Jangalwe, Badr Kiaf, Daniel C Pollacksmith, Shubhangi Kamalia, Sveta Padmanabhan, Hannah Bader, Tary Traore, Amanda Kordosky, Maytal Bowman, Nivya Sharma, Victor Ospina, Debanjan Goswamy, Alok D Mohapatra, Shazad A Khokhar, Kimberly M Cirelli, Vivin Karthik, Kenneth L Jahan, Nicolas Gaspar, Livio Dukaj, Jin He, Ryan E Kritzer, Alexander Cristofaro, Chandan Pavuluri, Zhonghua Zhu, Amy Virbasius, Elisaveta Todorova, Tyler M Sinacola, Savannah G Szemethy, Kyra N Sur, Vandana Keskar, Chris Malcuit, Qikai Xu, Yifan Wang, Danielle Ramsdell, Kenneth Olivier, Antoine J Boudot, Ribhu Nayar, Gavin MacBeath TScan Therapeutics, Waltham, MA

Introduction

Background: T-Plex is an autologous TCR-T cell therapy product comprising customized combinations of 2-3 TCR-T cell components that recognize different tumor antigens presented on specific HLA class I molecules. Each component of T-Plex is engineered using a transposon-based vector encoding the therapeutic TCR, CD8α and CD8β co-receptors, a CD34 epitope tag, a dominant-negative TGFβRII (DN-TGFβRII), and a mutated form of dihydrofolate reductase (DHFRdm). TSC-200-A0201 is intended for the treatment of HPV16+ HLA-A*02:01+ cancers. HPV16 is an oncogenic virus responsible for ~57% of cervical cancers and ~21% of head and neck squamous cell carcinomas. HPV16 E7 oncoprotein drives oncogenic transformation of infected cells and is not expressed by healthy tissues, making it a compelling

Functional characterization of TSC-200-A0201 TCR-T cells

Genome-wide SafetyScan screen identifies putative off-targets of TSC-200-A0201

 (B)

immunotherapeutic target.

Methods: The TSC-200-A0201 TCR is a naturally occurring TCR discovered using TScan's proprietary *ReceptorScan* platform. TSC-200-A0201 TCR-T cells engineered using a full-scale representative workflow for the planned manufacturing process were used to investigate the *in vitro* pharmacology and toxicology of TSC-200-A0201. TSC-200-A0201 was evaluated for avidity and target-dependent cytotoxicity, proliferation, and cytokine secretion *in vitro* as well as for anti-tumor efficacy *in vivo*. The contribution of DN-TGF β RII was assessed by testing the ability of TSC-200-A0201 TCR-T cells to resist the immuno-suppressive effects of TGF β . Further, TSC-200-A0201 was assessed for risk of alloreactivity and off-target recognition using TScan's *SafetyScan* screen. Finally, to assess the risk of off-target/off-tumor activity, TSC-200-A0201 TCR-T cells were tested for their reactivity to an extensive panel of 76 healthy human primary and iPSC-derived cells from tissues that are traditionally assessed in toxicology studies, including those expressing high levels of the putative off-targets of TSC-200-A0201.

Results: TSC-200-A0201 displayed high avidity for the cognate peptide (IC_{50} of ~4.2 pg/mL) and target-dependent secretion of inflammatory cytokines, killing of target cells, and proliferation of both engineered CD4+ and CD8+ T cells. Moreover, TSC-200-A0201 successfully controlled the growth of HLA-A*02:01+ HPV16+ tumors in mice. Target-dependent IFN- γ production and proliferation of TSC-200-A0201 was maintained in the presence of physiological levels of TGF β . Further, TSC-200-A0201 displayed no alloreactivity to the 110 most common class I HLAs in the US population. Although a few putative off-targets were identified in the *SafetyScan* screen, TSC-200-A0201 A0201 showed no reactivity to normal primary or iPSC-derived cells.

Conclusions: TSC-200-A0201 exhibits high specificity and potency. Based on these results, TSC-200-A0201 has been cleared by the U.S. FDA for clinical development

(A) Overview of TScan's proprietary genome-wide *SafetyScan* screen. TCRs are screened against >600,000 protein fragments spanning every protein in the entire human proteome to identify possible reactivities, including reactivities with low sequence homology to the natural target. (B) *SafetyScan* of TSC-200-A0201 identified 7 putative off-targets. XM_001722256 maps to the heterochromatic centromere region of chromosome 20 and has been removed from the RefSeq annotation indicating a lack of evidence for its expression.

TSC-200-A0201 TCR-T cells display no reactivity to healthy human primary and iPSC-derived cells

and has been incorporated in the T-Plex Phase 1 clinical trial master protocol.

TScan's vector co-delivers TCRα/β, CD8α/β, CD34 (Q) purification tag, DN-TGFβRII and DHFRdm

DN-TGFβRII- 0 ng/mL TGFβ 5 ng/mL TGFβ

Three batches of process-representative TSC-200-A0201TCR-T cells (PD288, PD289 and PD304) were assessed for functional responses to target cells. (A) Area under curve (AUC) for the growth of peptidepulsed T2 cells cocultured with TSC-200-A0201 TCR-T cells at an E:T of 5:1 over 72 h as a function of the HPV16 E7 peptide concentration. Data were normalized to the growth of the cells in the unpulsed (no peptide) condition. (B) Proliferation of TCR⁺CD34⁺ cytotoxic and helper TSC-200-A0201 TCR-T cells in response to HLA-A*02:01⁺HPV16⁺ cell lines CaSki, SCC090 and SCC152, and HLA-A*02:01⁺HPV16⁻ cell line NCI-H1792 over 4 days. (C) Cytotoxicity of TSC-200-A0201 TCR-T cells from batch PD304 against indicated target cancer cell lines at indicated E:Ts. (D) Cytokine production by TSC-200-A0201 TCR-T cells in response to indicated target cancer cell lines after 24h of coculture. (E-F) Three batches of TSC-200-A0201 process-representative TCR-T cells expressing DN-TGFβRII (PD288, PD289 and PD304) and two batches of process-similar TSC-200-A0201 TCR-T cells lacking DN-TGFβRII (D752-191 and D396-191) were cocultured with T2 cells pulsed with HPV16 E7 peptide in the presence or absence of TGF β . Cocultures were assessed for IFN-y production and T cell proliferation. (E) Levels of secreted IFN-y were quantified in the supernatant of 24h cocultures and normalized to the 0 ng/mL TGFβ condition. (F) Percentage of cells undergoing 6 or more cycles of cell division in co-cultures with or without TGF^β were plotted for total CD34+ TCR-T cells. (G) Two batches of process-representative TSC-200-A0201 TCR-T cells (PD289 and PD304) were assessed for anti-tumor efficacy in a subcutaneous xenograft model of SCC152 in NCG mice. Mice were inoculated with 1E6 SCC152 cells and injected with 2E7 CD34⁺ TSC-200-A0201 TCR-T or UTF T cells or PBS on day 1 and day 8. Mean tumor volume of each treatment group of mice (n=12) over time is shown.

TSC-200-A0201 displays no alloreactivity to the 110 most common class I HLAs

	PL	1200	P	7299	PD304	CPAMD	B HERC1	INT S4	MPL	NUTM1	SPTA
Peripheral Blood Mononuclear Cells (PBMC)											
Human Umbilical Vein Endothelial Cells (HUVEC)											
Normal Human Epidermal Keratinocytes (NHEK)											
Normal Human Dermal Fibroblasts (NHDF)											
Human Pulmonary Fibroblasts (HPF)											
Human Cardiac Fibroblasts (HCF)											
Human Aortic Smooth Muscle Cells (HAoSMC)											
Human Small Airway Epithelial Cells (HSAEpC)											
Human Bronchial Smooth Muscle Cells (HBSMC)											
Human Bronchial Epithelial Cells (HBEpC)											
Normal Human Epidermal Melanocytes (NHEM)											
Human Cervical Epithelial Cells (HCerEpC)											
Human Cardiac Myocytes (HCM)											
Adipocytes											
iCell® Astrocytes, 01434											
Astrocytes											
Hepatocytes											
Human Hepatic Stellate Cells (HHSteC)											
Human Skeletal Muscle Cells (HSkMC)											
Human Renal Epithelial Cells (HREpC)											
Retinal Pigment Epithelial Cells (RPEC)											
Human Prostate Epithelial Cells (HPrEpC)											
Human Bladder Epithelial Cells (HBIEpC)											
Human Mammary Epithelial Cells (HMEpC)											
Human Uterine Smooth Muscle Cells (HUtSMC)											
iCell® GABANeurons, 01434											
Erythroid Progenitor Cells (EPC)											
Megakaryocyte											
Human Aortic Endothelial Cells (HAoEC)											
Human Pulmonary Artery Endothelial Cells (HPAEC)											
Human Ovarian Fibroblasts (HOF)											
Human Ovarian Surface Epithelial Cells (HOSEpC)											

(A) Schematic of the TSC-200-A0201 clinical vector. The therapeutic TCR in TSC-200-A0201 was introduced into a transposon vector. The resulting TCR-T therapy product is a mixture of cytotoxic and helper T cells, both of which are reprogrammed to recognize HPV16+ HLA-A*02:01+ cells. In addition, the TCR-T cells express a CD34 (Q) tag, DN-TGF β RII and DHFRdm. (B) Three batches of process-representative TSC-200-A0201 TCR-T cells (PD288, PD289 and PD304) were generated and characterized for expression of CD34, CD4, CD8 β , TGF β RII and binding to the HPV16 E7₁₁₋₁₉ HLA-A*02:01 dextramer. Representative flow cytometry plots are shown for TCR-T cells from batch PD289.

357: Discovery of a novel MAGEC2 epitope for TCR-T adoptive cell therapy from expanded T cell clones of TIL therapy products

390: Discovery of MAGE-A1-specific TCR-T cell therapy candidates to expand multiplex therapy of solid tumors
376: Overcoming tumor heterogeneity – Clinical trial assays to prospectively assign patients customized multiplexed TCR-T cell therapy in Phase 1
682: Phase 1 trial of TSC-100 and TSC-101, Engineered T-Cell Therapies Targeting Minor Histocompatibility Antigens to Eliminate Residual Disease after Hematopoietic Cell Transplantation
709: Product Characteristics and Clinical Trial Design for T-Plex, a Multiplexed, Enhanced T cell Receptor-Engineered T cell Therapy for Solid Tumors

Lentivirally engineered CD8+ T cells expressing the recombinant TSC-200-A0201 TCR were co-cultured with MHC-null HEK293T cells re-expressing one of the 110 most frequently encountered Class I HLAs in the US population for 51hr. A positive control consisting of HEK293T cells expressing both a fragment of HPV16 E7 containing the HLA-A*02:01- restricted epitope and HLA-A*02:01 (red) and a negative control consisting of MHC-/- HEK293T cells (blue) were included in the screen. The inhibition of target cell growth by the TCR-T cells relative to that by the UTF control T cells was measured as a readout of the reactivity of the therapeutic TCR to allogeneic HLA proteins.

Three batches of process-representative TSC-200-A0201 TCR-T cells (PD288, PD289 and PD304) were assessed for risk of off-tumor reactivity. (**A**) TSC-200-A0201 TCR-T cells and control untransfected cells (UTF) were tested for reactivity to primary and iPSC-derived cells with IFN-γ production as a readout of the assay. Cells pulsed with the HPV16 E7 peptide served as positive control for the assay. SCC152 cells were used as a positive control target cell line and NCI-H1792 as negative control target cell line. (**B**) Summary of data from the off-tumor reactivity assay described in Figure (A). A total of 76 primary and iPSC-derived cell lots were tested as targets. Each colored cell in the table illustrates a single lot of cells for the availability of the primary cells. (**C**) Expression of the putative off-targets of the therapeutic TCR used in TSC-200-A0201 in the various cell type is presented in a color-scaled manner to indicate the range of expression across samples. The color scale used in RNAseq heatmaps has TPM values of zero set to white and values above zero follow a continuous color scale up to 100 TPM.